

Micro-ohmmètre portable 10 A, pour résistances inductives et non-inductives

Le microhmmètre (OM17) est conçu pour une utilisation sur site, en atelier, sur plate-forme ou principalement à l'extérieur. Il succède l'OM16 en proposant des performances améliorées notamment sur les résistances inductives.

• Performances : Mesures en 4 fils, précision de 0,05%

• Utilisation : Appareil de terrain

• Confort : Simple d'utilisation, grande autonomie

Description

L'OM17 permet la mesure, en 4 fils, de résistances inductives et non-selfiques. Il peut générer un courant continu ou pulsé de 1 mA à 10 A, en fonction des 7 calibres disponibles sélectionnables de 5 m Ω à 2,5 k Ω . Ces mesures auront une précision de 0,05% à la lecture ainsi qu'une résolution de 0,1 $\mu\Omega$.

L'utilisation principale du microhmmètre est sur le terrain. En effet, avec son boîtier (IP53 ouvert/IP64 fermé), et ses bornes de mesure métalliques à verrouillage, il propose des performances dignes d'un appareil de laboratoire.

Il s'utilise sur deux formes de courant :

Courant continu:

- Résistances inductives (bobines)
- Déclenchement automatique des mesures avec l'utilisation d'une sonde à déclenchement
- Compensation des FEM (Forces Electromagnétiques) avant déclenchement des mesures

<u>Courant pulsé :</u>

- Résistances non-selfiques
- Déclenchement automatique lorsque la continuité est établie
- Arrêt automatique du courant en fin de mesure
- Compensation des FEM à chaque mesure

Configuration et Affichage:

L'utilisateur peut configurer tous les paramètres (courant de mesure, calibre, type de résistance, unité de mesure, seuils d'alarmes...) depuis l'instrument ou par le logiciel LOG OM (livré en option).

L'écran de l'OM17 informe l'utilisateur en temps réel des conditions de mesure. Toutes détections de dépassement de calibre, de circuit ouvert ou de batterie faible est signalées par des LED et par un message à l'écran.

L'utilisateur peut également programmer la nature du métal ou son coefficient de température, la température de référence à laquelle seront ramenées la résistance mesurée et la température ambiante.

Points clés :

- Utilisation sur secteur ou sur batterie
- Mesure en 4 fils
- Courant continu/pulsé (1 mA à 10 A)
- Précision de 0,05% à la lecture, résolution de 0,1 $\mu\Omega$
- Compensation des FEM, Température ambiante, Coefficient de température du métal
- Seuil d'alarme programmable
- Capacité de stockage (1000 mesures)

Champs d'applications :

- Contrôle de métallisation et de continuité de masse, qualité de soudures
- Test de résistance de contact, composants électroniques
- Mesure de résistance, calcul de pertes et de l'échauffement des bobines, transformateurs, moteurs
- Résistivité et longueur des câbles plats et tressés
- Maintenance de réseau ferroviaire, réseau électrique

Domaines d'activités :

- Aéronautique
- Energie
- Electroménager
- Fabrication de fils et câbles
- Télécommunication
- Electronique

- AutomobileFerroviaire

Spécifications

Performances et spécifications techniques en température @23°C ±5°C

L'exactitude est exprimée en % de la lecture + une valeur fixe.

Mesure de résistance

Calibre	Résolution	Précision sur 1 an (23°C ±5°C)	Courant de mesure	Chute de tension
5 mΩ	0,1 μΩ	0,05 % + 1 μΩ	10 A	50 mV
25 mΩ	1 μΩ	0,05 % + 3 μΩ	10 A	250 mV
250 mΩ	10 μΩ	0,05 % + 30 μΩ	10 A	2,5 V
2500 mΩ	0,1 mΩ	0,05 % + 0,3 mΩ	1 A	2,5 V
25 Ω	1 mΩ	0,05 % + 3 mΩ	100 mA	2,5 V
250 Ω	10 mΩ	0,05 % + 30 mΩ	10 mA	2,5 V
2500 Ω	100 mΩ	0,05 % + 300 mΩ	1 mA	2,5 V

Choix du calibre manuel ou automatique Dépassement possible du calibre nominal :

• Calibre 5 m Ω : + 20 % • Calibre 25 m Ω : + 20 %

Tension maximale entre les bornes en circuit ouvert : 7 V Forme de courant DC : Continu ou pulsé

Mesure de température ambiante pour mesure à Tref

Туре	Résolution	Précision sur 1 an (23°C ±5°C)	Remarque
Pt100	0,1°C	0,5°C	Mesure par Pt100 externe ou valeur saisie au clavier

Campagnes de mesures typiques de résistances inductives (rotors / stators 1-3 m³)

Bobine testée	Valeur typique mesurée (mΩ)	Délai de 1ère mesure (s)	Durée campagne totale (minutes)	Nb mesures réalisées	Configuratio n
------------------	--------------------------------	--------------------------------	--	-------------------------	-------------------

Type Ré OM 17 sistance		OM 16	OM 17	OM 16	OM 17	OM 16	OM 17	OM 16	Calibre rant	Cou		
1 phase rotor (~ 0,5 H)	1 mΩ	1,237 1	1,2371 1,2382	(1) (2)	< 1	~ 2	> 20	~(1)0 s ~ 20 s (2)	>100 00	~ 321) 0 ~ 152)	5 mΩ	10 A
1 phase stator (~ 0,5 H)	3 mΩ	3,000 8	3,0008		< 1	~ 2	> 30	< 1	> 15000	< 500	5 mΩ	10 A
Transf o (~ 1 H)	150 mΩ	150,1 3	150,13		< 2	~ 3	> 45	< 2	> 22500	< 1000	250 mΩ	10 A
3 phase s mot eur	980 mΩ	980,3	980,3		< 1	~ 2	> 10	> 10	> 5000	> 5000	2500 mΩ	1 A

⁽¹⁾ Mesures à froid, au démarrage de l'instrument (2) Mesures à chaud, après une première campagne de mesures

Fonctionnalités additionnelles

Types de résistance mesurée	 Inductives : bobines, transformateurs, moteurs, câbles tressés Non-inductives : contrôles de métallisation, continuité de masse, résistances de contact, câbles plats
Déclenchement de mesure	Manuel ou automatique, permettant à un opérateur unique d'effectuer des mesures
FEM	Mesure et compensation des FEM parasites effectuée avant chaque mesure pour une plus grande précision
Compensation en température	- Température ambiante Tamb, mesurée avec Pt100 externe ou programmée par l'utilisateur - Température de référence programmée, à laquelle la mesure est ramenée : R(Tref) = [R(Tamb) * $(1 + \alpha * Tref)$] / $[1 + \alpha * Tamb]$ - Nature du métal, avec l'insertion de son coefficient de température (α)
Coefficient de température hors domaine de référence	<10% précision/°C (soit de 0 à 18°C et de 28 à 50°C)
Alarmes	Deux seuils programmables avec signalisation visuelle et sonore

Spécifications générales

Dimensions L x I x h	270 x 250 x 180 mm
Masse	4 kg
Alimentation	100 à 240 V (50 / 60 Hz)
Batterie	Type: Ni/Mh 8,5 Ah (Taille D) Temps de charge: 5 h Autonomie : > 5000 ech. (pulsé), > 60 min (courant continu sur calibre 250 m Ω à 10 A)
Interfaces de communication	RS 232
Mémoire	1000 mesures identifiées par numéro Relecture mémoire sur l'écran, par logiciel ou via une imprimante

Spécifications environnementales

Domaine de référence	23°C ±5°C (45 à 75% de HR sans condensation)
Domaine nominal de fonctionnement	0 à 50°C (20 à 75% de HR sans condensation)
Domaine limite de fonctionnement	-10°C à +55°C (10 à 80% de HR sans condensation)
Conditions de stockage	-40°C à +60°C (-15°C à +50°C avec batterie chargée)
Indice de protection	IP53 ouvert / IP64 fermé, selon EN 60529

Sécurité

Protections

- Electronique : Jusqu'à 250 V sur les fils 'tension'
- Par fusible sur les fils 'courant'
- Contre l'ouverture du circuit 'courant' en mesure de résistances selfiques

Tension d'assignation par rapport à la terre

Sécurité électrique

60 V

EN 61010-1

Conformité CEM

Modèles et accessoires

Instrument:

OM17 Micro-ohmmètre portable

Livré en standard avec : - Cordon secteur standard avec transformateur 200V/15 V , prise jack pour recharger la batterie

- Notice d'utilisation simplifiée

Pinces et sondes :

A noter que deux pinces sont nécessaires pour effectuer les mesures, certaines sont proposées

à l'unité

AMT005 Pointe de touche, à l'unité Diamètre de la pointe : 3 mm, longueur sans

poignée : 83 mm, longueur totale : 215 mm Longueur de câble : 5 m

AMT006 Pince Kelvin grand format, à l'unité Diamètre d'ouverture : 25 mm, longueur

de câble : 5 m

AMT011 Pointe de touche compacte, à l'unité Diamètre de la pointe : 3 mm, longueur

totale: 125 mm, longueur de câble: 5 m

AMT012 Petite pince Kelvin, à l'unité Diamètre d'ouverture : 12 mm, longueur de

câble : 5 m

AMT013 Pointe de touche à déclenchement (connexion par port RS 232), à l'unité

Diamètre : 3 mm, longueur sans poignée : 83 mm, longueur totale : 215 mm Longueur de câble

: 5 m

AMT008 Câble rallonge avec enrouleur, longueur : 20 m

AMT014 Capteur de temperature externe Pt100

AMT015 Rallonge pour capteur de temperature AMT014, longueur : 2 m

Autres accessoires:

LOG OM Logiciel de configuration & exploitation pour OM 17, incluant un câble RS232 F

/ F

AN5909 Cordon RS232 F / F (Liaison PC)

AN5875 Cordon RS232 F / M (Liaison imprimante)

Certification:

OMA11EN Certificat de calibration COFRAC standardisé

Informations de transport :

Taille 270 x 250 x 180 mm Poids 4 kg